{-# OPTIONS --cubical-compatible --safe #-}
open import Level
open import Algebra.Bundles
open import Data.Sum
open import Data.Product hiding (map₂)
open import Data.List
open import Data.List.Membership.Propositional renaming (_∈_ to _⋿_)
open import Algebra.Bundles
import Data.Nat as Nat
import Data.Nat.Properties
open import Relation.Unary hiding (∅)
import Relation.Binary.PropositionalEquality as PE
module Krull.Static
(R… : CommutativeRing 0ℓ 0ℓ)
(open CommutativeRing R… renaming (Carrier to R))
(Enum : Nat.ℕ → Pred R 0ℓ)
(Enum-singlevalued : {n : Nat.ℕ} {x y : R} → Enum n x → Enum n y → x PE.≡ y) where
open import Krull.Base (R…)
G : Nat.ℕ → Pred R 0ℓ
G Nat.zero = ∅
G (Nat.suc n) = G n ∪ { x ∶ Enum n ∣ ¬ 1# ∈ ⟨ G n ∪ { x } ⟩ }
G-increasing : {n m : Nat.ℕ} → n Nat.≤ m → G n ⊆ G m
G-increasing p = go (Data.Nat.Properties.≤⇒≤′ p)
where
go : {n m : Nat.ℕ} → n Nat.≤′ m → G n ⊆ G m
go Nat.≤′-refl z = z
go (Nat.≤′-step p) z = inj₁ (go p z)
all-stages-proper : (n : Nat.ℕ) → ¬ 1# ∈ ⟨ G n ⟩
all-stages-proper Nat.zero p = ⟨∅⟩-trivial p
all-stages-proper (Nat.suc n) p with ⟨⟩-union₀ p
... | inj₁ q = all-stages-proper n q
... | inj₂ (x , In q f) = f (⟨⟩-monotone (map₂ λ { (In r s) → Enum-singlevalued q r} ) p)
𝔪 : Pred R 0ℓ
𝔪 = ⋃[ n ∶ Nat.ℕ ] G n
𝔪-proper : ¬ 1# ∈ 𝔪
𝔪-proper (n , q) = all-stages-proper n (Base q)
⟨𝔪⟩-proper : ¬ 1# ∈ ⟨ 𝔪 ⟩
⟨𝔪⟩-proper p with ⟨⟩-compact G G-increasing p
... | n , q = all-stages-proper n q
3⇒4 : {n : Nat.ℕ} → ¬ 1# ∈ ⟨ 𝔪 ∪ Enum n ⟩ → ¬ 1# ∈ ⟨ G n ∪ Enum n ⟩
3⇒4 {n} = contraposition λ p → ⟨⟩-monotone (λ { (inj₁ q) → inj₁ (n , q) ; (inj₂ q) → inj₂ q }) {1#} p
4⇒1 : {n : Nat.ℕ} → ¬ 1# ∈ ⟨ G n ∪ Enum n ⟩ → Enum n ⊆ G (Nat.suc n)
4⇒1 p q = inj₂ (In q (contraposition (⟨⟩-monotone (map₂ λ { PE.refl → q }) {1#}) p))
1⇒2 : {n : Nat.ℕ} → Enum n ⊆ G (Nat.suc n) → Enum n ⊆ 𝔪
1⇒2 {n} p q = Nat.suc n , p q
2⇒3 : {n : Nat.ℕ} → Enum n ⊆ 𝔪 → ¬ 1# ∈ ⟨ 𝔪 ∪ Enum n ⟩
2⇒3 p q = ⟨𝔪⟩-proper (⟨⟩-monotone (λ { (inj₁ r) → r ; (inj₂ r) → p r }) {1#} q)
3⇒2 : {n : Nat.ℕ} → ¬ 1# ∈ ⟨ 𝔪 ∪ Enum n ⟩ → Enum n ⊆ 𝔪
3⇒2 p = 1⇒2 (4⇒1 (3⇒4 p))
module _ (Enum-surjective : (x : R) → Σ[ n ∈ Nat.ℕ ] Enum n x) where
𝔪-is-ideal : ⟨ 𝔪 ⟩ ⊆ 𝔪
𝔪-is-ideal {x} p with Enum-surjective x
... | n , r = 3⇒2 (λ q → ⟨𝔪⟩-proper (⟨⟩-idempotent (⟨⟩-monotone (λ { (inj₁ s) → Base s ; (inj₂ s) → Eq (≡⇒≈ (Enum-singlevalued r s)) p }) q))) r
𝔪-is-maximal
: (x : R)
→ ¬ 1# ∈ ⟨ 𝔪 ∪ { x } ⟩
→ x ∈ 𝔪
𝔪-is-maximal x p with Enum-surjective x
... | n , r = 3⇒2 (contraposition (⟨⟩-monotone (map₂ λ s → Enum-singlevalued r s) {1#}) p) r
example : (a b u v : R) → u * a ≈ 1# → u * b ≈ 0# → v * a ≈ 0# → v * b ≈ 1# → ⊥
example a b u v ua1 ub0 va0 vb1 = case-a-zero (𝔪-is-maximal a case-a-inv)
where
case-a-inv : 1# ∈ ⟨ 𝔪 ∪ { a } ⟩ → ⊥
case-a-inv p = ⟨𝔪⟩-proper (⟨⟩-idempotent (⟨⟩-monotone (λ { (w , eq , inj₁ p) → Eq (≡⇒≈ (PE.sym eq)) (Magnet (Base p)) ; (w , eq , inj₂ PE.refl) → Eq (trans (trans (sym (zeroˡ b)) (trans (*-congʳ (sym va0)) (trans (*-assoc v w b) (trans (*-congˡ (*-comm w b)) (sym (*-assoc v b w)))))) (≡⇒≈ (PE.sym eq))) Zero }) (Eq (trans (*-identityʳ (v * b)) vb1) (⟨⟩-mult (v * b) p))))
case-a-zero : a ∈ 𝔪 → ⊥
case-a-zero p = ⟨𝔪⟩-proper (Eq ua1 (Magnet (Base p)))